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Abstract—As a typical emerging application of cyber physical system, smart power grid is composed of interdependent power grid
and communication/control networks. The latter one contains relay nodes for communication and operation centers to control power grid.
Failure in one network might cause failures in the other. Moreover, these failures may occur recursively between the two networks, leading
to cascading failures. We propose a k-to-n interdependency model for smart grid. Each relay node and operation center is supported by
only one power station, while each power station is monitored and controlled by k operation centers. Each operation center controls n
power stations. We show that the system controlling cost is proportional to k. By calculating the fraction of functioning parts (survival ratio)
using percolation theory and generating functions, we reveal the nonlinear relation between controlling cost and system robustness, and
use graphic solution prove that a threshold exists for the proportion of faulty nodes, beyond which the system collapses. The extensive
simulations validate our analysis, determine the percentage of survivals and the critical values for different system parameters. The
mathematical and experimental results show that smart grid with higher controlling cost has a sharper transition, and thus is more robust.
This is the first paper focusing on improving smart power grid robustness by changing monitoring strategies, from an interdependent
complex networks perspective.
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1 INTRODUCTION

Cyber-physical systems (CPS) transform our world with
new relationships between computer-based control and
communication systems, engineered systems and physi-
cal reality. The software programs, networking and com-
puters are integrated together rather than computation
alone. In a CPS, physical devices such as battery, sensors
are viewed as physical components. The embedded com-
puters and communication networks are considered as
cyber components. As one of important CPS applications,
smart power grid is composed of interdependent power
grid and communication/control networks. Conventional
electrical grids utilize centralized command and control
structures, e.g., SCADA (Supervisory Control And Da-
ta Acquisition) system relying on human monitors for
identifying faults and decision making. Massive black-
outs have occurred in the past since the existing system
lacks real-time control ability, e.g., the very recent huge
blackout happened in July 2012, affected more than 600
million people in India [1].

The smart power grid concept addresses the real-time
control and energy efficiency. It is an electrical grid that
integrates information and communications technology
and different sources of power generation e.g., fossil-fuel,
solar and wind. It predicts the electricity demands in
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different regions, monitors the power usage of customers
using smart meters, and deals with system failure rapidly.

We study the reliability of smart power grid. The com-
munications and control infrastructures need energy to
properly operate, while the power stations and electricity
transmission are controlled by operation centers. Operation
centers can also transfer and exchange information with
other communication devices. The two networks are con-
nected and mutually dependent, and smart power grid
can be regarded as an interdependent network. The failure
in either of them may lead to the failure in another. The
breakdown of a power station would cause the outage
of communication and control nodes, while the faults
in communications and control system might lead to an
improper function of power stations. Moreover, failures
can occur recursively between the two networks, causing
cascading failures, and potential blackout. One important
parameter for discussing the smart grid robustness is the
fraction of properly functioning nodes, i.e., survival ratio,
after cascading failure stops [18].

Each power station can be controlled by multiple dis-
tinct operation centers, and functions as long as at least
one of its operation centers is working. We believe that
the more control relations (links) and devices the system
has, the higher cost is required. We define the system con-
trolling cost as proportionally dependent on the number
of links between operation centers and power stations.
Our primary interest is to find out the relation between
controlling cost and system robustness. In this paper, we
design a mathematical model of smart power grid to
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understand the interaction of the different components.
This model enables us to study how failures propagate
within the system and what are system robustness under
different monitoring schemes. Our analysis offers insights
for building optimal smart grid infrastructures.

Current research on robustness in smart power grid
are mainly focusing on load distribution and malicious
attacks. An architecture for distributed generation, which
can help prevent cascading failures, is described in [5].
[13], [14] study the cascading failure in electricity grid
due to the overload in a single station. To decrease the
impact of cascading failure or even to prevent it, [21]
analyze the tripping of overloaded lines and proposed a
model to control these lines. [19] proposed three mitiga-
tion strategies and simulate them on real-world network
structures to find an effective way for reducing cascading
failure. Software overlays and multiple routes to deliver
critical data to prevent failures were studied in [26]. Load
distribution attack was deeply investigated in [25] to
provide effective prevention on false data injection. How-
ever, none of previous papers considers the cascading
failure between power grid and communication network,
or presents more reliable architecture.

Interdependent network [2] was proposed to study the
interactions between networks. The models proposed in
[2], [3] are ‘one-on-one’ interdependency models, within
which the node properly operates relying on one unique
node in the other network. Such models do not correctly
reflect the characteristics of smart grid since the power
station normally provides energy to multiple communica-
tion devices. The ‘multiple-to-multiple’ interdependency
models developed in [24] assumed that each node is
assigned with the same number of inter links. Each node
functions as long as at least one of its supporting nodes is
operating. [22] points out that the interdependency in real
world network is unidirectional rather than bidirectional.
These articles do not follow the ‘one-to-multiple’ require-
ment of smart power grid: each communication/control
node is supported by only one power station, while each
power station is monitored and controlled by multiple
operation centers.

1.1 Our Contribution
We propose a novel smart grid model where each power
station is operated by k distinct operation centers, and
each operation center could monitor and control n power
stations. The defined ’system controlling cost’ is simply
equal to k units, and the ’monitoring capability’ for
each operation center is n. By calculating the fraction
of functioning parts (survival ratio) after the cascading
failure stops, we mathematically study the relation be-
tween system robustness, controlling cost and monitoring
capability.

We follow a three-step scheme to construct ’one-to-
multiple’ interdependent network to model smart power
grid. Both power grid and communication networks are
type of scale-free networks [18], in which the degree
distribution follows power law. This is the first paper
to study the smart power grid robustness (the effect
of cascading failures) of different monitoring strategies,
using interdependent network and percolation theory. We
present detailed mathematical analysis of the random
failure propagation in the system. Our results show that
if the proportion of initial faulty nodes exceeds a critical
value, the entire system collapses. Our analysis shows
that the system robustness experiences a sublinear im-
provement with the increase of k, while n has no impact
on system robustness when the size of network is large.

The extensive simulation validates our analysis. The
system robustness against random failure can be im-
proved by increasing monitoring cost though they have
nonlinear relation. Meanwhile, the critical value for a
higher k is smaller, which means the system can tolerate
a higher fraction of random failures. The robustness
improves between k = 1 and k = 2 significantly, while
the gap between k = 10 and k = 15 is small. Hence, for
building a smart power grid, adding as many as possible
control link is not good strategy since the massive extra
cost does not improve system reliability significantly. The
simulation also shows that for a small k, the system meets
a second-order continues transition, while for higher k,
the transition becomes sharper. Thus, the system is easier
to be predicted. Our experimental results illustrate that
higher n improves system robustness slightly and at the
same time decreases the critical value. But the disadvan-
tage is that the transition becomes flat so that the system
is harder to be predicted. Therefore, for building smart
grid infrastructures, we need carefully choose the value
of k and n depending on our demands.

1.2 Organization
The paper is organized as follows. Section 2 reviews the
background on cascading failure in power grid and inter-
dependent networks. A practical model for smart power
grid and its three-step construction procedure are pro-
posed in Section 3. We introduce the math tools used in
single complex networks in Section 4. The mathematical
approximation for cascading failure in smart grid is given
in Section 5, and we estimate the size of the remaining
functioning nodes after cascading stops. Section 6 shows
our extensive simulations. We draw the conclusions in
Section 7.

2 RELATED WORK

A part of existing research on CPS are focusing on
designing analytical CPS model. A unique model of a
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generic CPS appears to be infeasible due to specifics of
actuation and physical world reaction. Existing work on
modelling is primarily about extracting properties from
physical systems and assumed associated cyber system
and matching with some network families. For example,
[23] proposed an algorithm that generates random topolo-
gy power grids featuring the same topology and electrical
characteristics derived from the real data. [7] focused
on the challenges of modeling CPSs that arise from the
intrinsic heterogeneity, concurrency, and sensitivity to
timing. Specific technologies applied in a particular CPS
include hybrid system modeling and simulation, concur-
rent and heterogeneous models of computation, the use
of domain-specific ontologies to enhance modularity, and
the joint modeling of functionality and implementation
architectures [7].

Moslehi and Kumar [16] critically reviewed the re-
liability impacts of major components such as energy
generator, demand response, communications and elec-
tricity transportation in smart power grid. They presented
a grid-wide IT architectural framework to improve the
robustness of system, and discussed the technical feasi-
bility. A power generation and distribution architecture
has been discussed in [5], arguing that a distributed
generation enhances the robustness of the system. Us-
ing optimization techniques and simulations, the authors
showed that fault tolerance increases with the number of
generators.

Blackouts during the past several decades were mostly
due to the overload cascading failure. Kadloor and Santhi
[13] modeled power grid as a graph and studied the sys-
tem robustness. By extensive mathematical analysis, they
estimated the disturbance levels the system can tolerate
before a few overloaded nodes trigger a large blackout.
Kinney et al. [14] used the real network structure of
the North American power grid and modeled it as a
weighted graph. Combining dynamical approach of the
Crucitti-Latora-Marchiori model and complex networks,
they studied two types of node overload progression,
and showed that the disruption of 40% transmission
substations leads to the cascading failure, and a single
node failure can cause up to 25% loss of transmission
efficiency.

The case of static overload failure was discussed in
[6]. Optimization technique was used and a distance-
to-failure algorithm was proposed to predict the weak
points in power grid. They applied their algorithm to two
real power grid examples and concluded that the failures
due to overload are sufficiently sparse if the normal
operational stations are healthy. Load Redistribution (LR)
attack was developed and studied in [25] by analyzing
their damage to power grid operation. It proposed an
attack model describing the main goal of LR attack and

then based on that, indicated the theory and criterion of
protecting the system from LR attack.

Pfitzner et al. [21] proposed a model to focus on
the analysis of tripping of already overloaded lines. By
simulating on a real-world power grid structure, they
showed that such controlled tripping leads to significant
mitigation of cascading failure.

Infrastructures such as water supply, power grid, trans-
portation system, fuel stations are becoming increasing-
ly interconnected. Studying the interactions and under-
standing how robustness is challenging due to the inter-
dependency among such networks.

Buldyrev et al. [2] studied the cascading failures robust-
ness with percolation theory [18] which was conventionally
applied in a single complex network. A ‘one-to-one’
correspondence model was proposed, where each node
in network A functions depending on exactly one node
in network B, and vice versa. The ‘multiple-to-multiple’
correspondence was proposed in [22], where a single
node in network A operates depending on more than one
node in network B, and vice versa. Each node functions
as long as at least one of its supporting nodes is operating.
They also assumed that not all the pairs of nodes are
mutually dependent, and the interdependency is some-
times unidirectional. [20] described with two types of inter
links. The dependency link makes failure in one network
cause failure in the other network, while connectivity link
enables the nodes work cooperatively. High density of
dependency link makes networks more vulnerable.

The work of [2], [22] was extended in [24] by a ‘regular
allocation’, where every node in the system is assigned
same number of inter links. The regular allocation scheme
is proven to be optimal when the topology of each
individual network is unknown. A targeted attack was
discussed in [11], where the authors pointed out that
protecting the high degree nodes can improve system
robustness significantly. Gao et al. [9] studied the inter-
acting networks and presented an percolation law for a
network of several interdependent networks. A survey of
interdependent networks can be found in [10].

In the previous work [12], the authors proposed an
‘one on one’ interdependent model for smart power grid
and measured the size of survivals. In the proposed
model, both power grid and communication network are
scale-free networks. Since no closed-form solution can be
derived, simulation was used to determine the results.

3 SYSTEM MODEL

3.1 Assumptions and Definitions

We model the smart power grid as two interconnect-
ed networks NP and NI (power grid and communica-
tion/control network, respectively). NI is envisioned as
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a part of the Internet backbone, extended with some
wireless links. Both networks consist of a large number
of components; some of them are considered as termi-
nals, with limited influence to the system reliability. For
instance, the breakdown of a smart meter in one house is
not likely to cause the failure of other components. We on-
ly consider the components that have some dependencies
or are providing connectivity. Nodes in NP represent the
power plants, substations, transformers and new energy
generators. Nodes in NI are Autonomous Systems (AS).
There are two types of ASs: Operation Centers, which mon-
itor and control power stations and exchange information
with other communication devices, and Relaying ASs, for
relaying messages in smart grid system, with no direct
impact on power stations. SP and SI are sizes of NP and
NI, respectively.

The distribution of power stations and edges in power
grid was studied and modeled in [4], [17], which con-
sidered power grid as a scale-free network. A scale-free
network is a network whose degree distribution follows
a power law, P(z) ∝ z−γ , where P(z) is the probability
that the degree of a node is z, γ is power law exponent.
Extensive data show that Internet is also a scale-free
network [8], [18].

3.2 Interdependent Model

We refer to edges that connect the nodes from different
networks as Inter Links. We assume that each power
station in NP is operated by k operation centers, and
functions properly as long as at least one of them works.
The monitoring capability of each operation center is de-
fined as the number n of power stations it can control.
Thus, each node NP has k CD (Control-Dependency)
inter links and each operation center has n CD links.
Meanwhile, each power station has multiple ED (Energy-
Dependency) links to ASs in NI, while each node in NI

has only one ED link.
We define the cost including hardware, software and

labour as Controlling Cost, measured based on two pa-
rameters: k and the number of operation centers m. k
determines k · SP, the total number of CD inter links
required. To minimize the cost with a fixed k, we min-
imize m by fully utilizing the control capability of each
operation center. In other words, the minimum control-
ling cost is achieved for m = k·SP

n . Thus the minimum
controlling cost is proportional to k. In the rest of paper,
we simply consider the controlling cost to be k. For each
k, we automatically calculate the minimum m in the
cost formula. Figure 1 gives a sketch of our model, with
k = 1,m = 3, n = 2.

We construct interlinks by applying a three step proce-
dure:

4

ED Link CD Link

NP

NI

Fig. 3. Parallel Arterial Roads. The shaded station-cells can be scheduled simultaneously. In any time slot, there are 2 log n concurrent links initiated from
every activated station-cell, [1].

Fig. 1. Each node in NI has one energy inter link from
NP, and each node in NP is controlled by k = 1 operation
centers. Three dark nodes (m = 3) are operation centers
and each controls n = 2 nodes from NP.

3.2.1 Allocating ED Link
We consider each node in NP as a bin and nodes in NI are
balls. The allocation follows the well-known Balls and Bins
problem, where SI balls have to be independently and
uniformly put into SP bins, the probability that one ball
is assigned into i-th bin is 1

SP
. For each bin, the probability

it has t balls is given by:

P(t) =

(
SI

t

)
· ( 1

SP
)t · (1− 1

SP
)SI−t. (1)

Hence, the number of AS t that is supported by each pow-
er station follows a binomial distribution with B(SI, 1

SP
).

3.2.2 Choosing Minimum Number of Operation Center
We choose uniformly m nodes at random as operation
centers from NI. The relation between m, n and k is given
by

m =
k · SP

n
, (2)

where each node in NP is monitored by k operation
centers, thus totally k · SP links are required, and each
operation center can control n power stations.

3.2.3 Allocating CD Link
Subsequently, we match m operation centers and SP

power stations so that each operation center is allocated
n power stations, and each power station is controlled by
k operating centers. This can be done in a sequence, by
operating centers selecting power stations at random but
only among stations not selected k times already.

4 MATHEMATICAL ANALYSIS

In this section, we show how cascading failure propagates
in smart grid. Then we introduce the math tools that be
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used in a single complex network. Before starting, we list
the definitions and notations in Table 1. We introduce a
notation FN (φ) from [10], [24] to represent the expected
fraction of giant component in the subnetwork which
occupies the fraction φ of the nodes in the entire network
N . In our work, we focus on a subclass of scale-free
networks whose node degree strictly follows the power
law degree distribution. Then, besides the fraction φ,
FN (φ) only depends on the node degree distribution
of N , [2], [10]. Furthermore, since we only consider
the networks (including the sequence of subnetworks
and giant components) with infinite size, the power law
distribution is completely determined by the power law
exponent. Thus, in this paper, we let F (φ, λ) represent the
expected fraction of giant component in the subnetwork
which occupies the fraction φ of the nodes in the entire
scale-free network with a power law degree distribution,
where λ is the power law exponent. Accordingly, F (φ, λP)

and F (φ, λI) represent the fractions of giant components
for network NP and NI whose power law exponents are
λP and λI, respectively.

4.1 Failure Cascading Process

We define system robustness in our model as the fraction
of survivals after the cascading failure stops, i.e., the
nodes that still can operate. We focus on how this failure
cascading propagates and then estimate the survivals.
Considering smart grid as two complex networks, we
assume two conditions should be satisfied if a node is
in work:

1) The node belongs to the giant component.
2) At least one inter link is connected to this node,

where this link comes from a functioning node in
the other network.

We begin with a random removal of (1−φ)·SI nodes in
NI as the simulation of initial failures or attacks. After this
removal, the related intra links and inter links of deleted
nodes are removed. As a result, NI begins to fragment
into disconnected components. Due to our Condition 1,
only the nodes belong to giant component can operate
properly. Therefore, the nodes in small components are
considered as failure. Now owning to the interdepen-
dency, a part of nodes in NP lost inter links so they
are unsatisfied with Condition 2. Then these nodes and
related links are removed. The fragmentation inNP might
lead to further failures in NI, because now some nodes in
NI have no inter links. This cascading failure continues
recursively between two networks, and reaches one of the
following two final status: 1) all nodes are faulty and the
giant component disappears; 2) the two giant components
in NP and NI are mutually connected. One complete
cascading failure example is given by Fig. 2. Initially, ten

TABLE 1
Notations for the analysis

k number of operation centers that control a
power station, it represents the system con-
trolling cost

n monitoring capability of operation center
m number of operation centers

PP(z),PI(z) intra degree distribution for network NP,NI

λP, λI power law exponent of PP(z),PI(z).
F (φ, λP), F (φ, λI) the fraction of giant component in the sub-

network which occupies the fraction φ of the
nodes in the entire network NP and NI

nodes and six nodes are in NI and NP respectively. After
one node is attacked in NI, the entire system collapses.

4.2 Generating Function for An Individual Network

Generating function and percolation theory are widely
used to solve the problems in complex network. We
describe the generating function for a single network that
will also be used in studying interdependent networks.
We introduce generating function into our model. Let us
assume the nodes in NP are assigned a degree z with
the same probability PP(z), which follows power law in
scale-free network. Thus PP(z) ∝ z−λP . The generating
function is defined as

GP(u) =

∞∑
z=0

PP(z) · uz, (3)

where u is an arbitrary variable. The excess degree distri-
bution [18] is the number of edges attached to a vertex
other than the edge we arrived along, and given by

HP(u) =

∞∑
z=0

QP(z) · uz (4)

QP(z) =
(z + 1) ·PP(z + 1)

z̄
, (5)

where z̄ is the average degree of network NP. Using Eq.
(3), z̄ is calculated

z̄ =

∞∑
z=0

z ·PP(z) =
∂GP

∂u
|u→1 = G′P(1) (6)

Then HP(u) can be written as

HP(u) = z̄ ·
∞∑
z=0

(z + 1) ·PP(z + 1)uz

= z̄ ·
∞∑
z=0

zPP(z)uz−1

= z̄
∂GP

∂u
=
G′P(u)

G′P(1)
(7)
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(a) Initial Stage (b) Stage 1

(e) Stage 4

(c) Stage 2

(f) Stage 5(d) Stage 3

Failure

B4B2

A4

B6

B3

B1
B5

A7

NP

NI

NI

NP

NI

NP

NP

NI

NI

NP

NI

NP

Fig. 3.
Fig. 2. A sketch of cascading failure in smart grid. Initially, power grid NP has 6 nodes while Internet has 10 nodes.
Each node in NP is operated by one operation center, which implies k = 1. Each operation center in NI can operate 2
power stations, n = 2. Three dark nodes are randomly chosen and assigned as operation centers. The random attack
causes the failure of one operation center, thus all its related links are removed. In stage 1, the remaining nodes in
NI are mutually reachable, therefore consist of a giant component. B2 and B4 lose control, thus in Stage 2 they are
out of work. In Stage 3, due to the loss of energy inter links, some nodes in NI are removed. As a result, nodes A4

is disconnected from the giant component, thus fails. Consequently, B1, B5 are faulty since they lose the control inter
links from A4. In Stage 5, the remaining nodes in NP are disconnected, therefore no giant component exists. Due to our
Condition 1, the entire NP collapses. As a result, the nodes in NI lost energy support, thus fail.

Once removing a fraction 1−φ of nodes from network
NP, the remaining fraction φ of the network will have
different degree distribution [22], with a new argument
1 − φ + φu [10]. According to the results of a single
network, the proportion of giant component F (φ, λP) of
subnetwork φ is given by{

F (φ, λP) = 1−GP[1− φ+ φ · u]

u = HP[1− φ+ φ · u]
(8)

The functional forms of GP(u) and HP(u) are compli-
cated, deriving the closed form of Eq. (8) is still a chal-
lenge [2], [3], [18]. However, an approximation expression
for F (φ, λP) was introduced:

Lemma 1 ( [8]): For a single scale-free network NP, for
2 < λ < 3, with some approximation and simplification, it
holds that F (φ, λP) ∝ ε ·φ1/(3−λP), where ε is a predefined
constant.

We can analogously define GI(u), HI(u), F (φ, λI) for
network NI as counterparts to GP(u), HP(u), F (φ, λP) for
NP.

TABLE 2
Notations for math approximation

P ′i , C
′
i the remaining subnetwork in NP and NI

with at least one support inter links in stage
i

Pi, Ci the functioning giant component in P ′i , C
′
i

P̃ ′i , C̃
′
i, P̃i, C̃i the number of nodes in P ′i , C

′
i, Pi, Ci

µ′pi , µ
′
ci , µpi , µci the fractions to P ′i , C

′
i, Pi, Ci. i.e., P̃ ′i = µ′pi ·SP

5 MATH APPROXIMATION FOR FAILURE CAS-
CADING

We analyze the dynamics of cascading failure using
percolation theory in this section. The objective of this
study is to quantify the system robustness with different
k and n, by means of estimating the functioning giant
component size in both NP and NI. The notations needed
in this section are listed in Table 2.
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5.1 Stage 1: Random Removal in NI

We begin our estimation with random removal of a frac-
tion 1− φ of nodes in NI. The size of remaining network
C ′1 is SI · φ, therefore µ′c1 = φ. We assume this value is
a positive integer if SI is sufficiently large. According to
our Condition 1, only the nodes belonging to the giant
component can operate properly, next step is to calculate
the size of giant component. The size of giant component
C1 is

C̃1 = C̃ ′1 · F (µ′c1 , λI) = µ′c1 · SI · F (µ′c1 , λI) = µc1 · SI

µc1 = µ′c1 · F (µ′c1 , λI), (9)

where µc1 implies the fraction of C1 to NI. We notice only
the nodes in C1 are still in work at the end of this stage.

5.2 Stage 2: Fragmentation on NP

As the network fragmentation from NI to C1, a part of
inter links are removed. Thus, some nodes in NP would
be faulty, because they lost the control inter links. As a
result of Stage 1, the fraction 1−µc1 of nodes are gone. If
the network size is large enough, then the fraction 1−µc1
of operation centers are removed since the initial failures
are random. Because each operation center has the same
control capability n, the probability for each control link
to be removed can be approximated by 1−µc1 . With this
respective, a node inNP loses all its k control links (totally
out of control) with the probability of (1−µc1)k. Denoting
P ′2 is the subnetwork belong which the nodes retain at
least one control link, we have

P̃ ′2 = (1− (1− µc1)k) · SP

µp′2 = 1− (1− µc1)k (10)

Within P ′2, the probability for a node loses k − i of its
control links follows the binomial distribution B(k, µc1).
The size of giant component in P ′2 is

P̃2 = P̃ ′2 · F (µ′p2 , λP) = µ′p2 · SP · F (µ′p2 , λP), (11)

µp2 = µ′p2 · F (µ′p2 , λP). (12)

Each node in P2 can survive from P ′2 with a probability
P̃2/P̃ ′2 = F (µ′p2 , λP). As a result, the expected number of
nodes with i control inter links in P2 is given by

P̃2|i =

(
k

i

)
µic1(1− µc1)k−i · F (µ′p2 , λP) · SP, i <= k. (13)

As a consequence of this fragmentation, the control
inter links which operate the nodes belong to P ′2 but
not to P2 become ineffectiveness even they are still alive.
They will have no impact on the cascading failure in
the following stages. Thus, we consider these links as
faulty and remove them from the system. From P ′2 to
P2, the probability for the control link to be removed is

approximate to 1 − F (µ′p2 , λP), then an operation center
in C1 has i control links with the probability of

Po(i) =

(
n

i

)
F (µ′p2 , λP)i·(1−F (µ′p2 , λP))n−i, i <= n. (14)

5.3 Stage 3: Recursive Failure to NI

The removal of nodes and inter links in Stage 2 affects
NI. The nodes in network NI may lose energy inter link
thus stops operating. We observe the number of ener-
gy inter links subnetwork P2 provides is approximately
P̃2 ·

∑SI

t=0 Pt · t, when P̃2 is large enough (law of large
numbers is satisfied). Initially the total number of energy
inter links is SI since each node in SI depends on only
one power stations. With this respective, the probability
for one energy inter link removal is

1− P̃2 ·
∑SI

t=0 Pt · t
SI

= 1− µp2 .

The number of nodes in C1 that has an energy inter
link from P2 is given by

C̃ ′3 = C̃1 − C̃1 · (1− µp2) = µp2 · µc1 · SI.

That is, passing from C1 to C ′3, a fraction 1−µp2 of nodes
are broken. As we did in the previous stages, the next
step is to calculate the size of giant component of C ′3. As
mentioned in [2], it is indeed not an easy task. Instead,
we consider the joint effect of the node removal in Stage
1 and Stage 3 are equivalent, i.e., the effect of removing
the fraction of 1− µp2 of nodes in C1 has the same effect
as taking out the same fraction size from C ′1 in terms
of calculating the giant component size of C ′3. We find
that the fragmentation from NI to C ′3 can be modeled by
removing node of a fraction of

1− φ+ φ · (1− µp2) = 1− φ · µp2
in Stage 1. Thus, the equivalent µ′c3 = φ · µp2 , by which
the size of giant component C3 in subnetwork C ′3 is

C̃3 = µ′c3 · SI · F (µ′c3 , λI) = µc3 · SI. (15)

5.4 Stage 4: Further Fragmentation in NP

As networkNI splits to C3 in previous stage, more control
inter links are removed and so forth more nodes in NP is
going to be faulty. Notice the probability each operation
center survives from C1 to C3 is µc3

µc1
. The number of

control inter links the network C1 has is approximated
to
∑n
i=1 i · Po(i) · µc1 · m. Since each operation center

survives with same probability, the number of existing
control links in C3 can be given by

∑n
i=1 i ·Po(i) ·µc3 ·m.

Thus, the probability of a control inter link to be removed
is 1− µc3

µc1
.
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Consequently, the probability for a node in P2 with i

control inter links stopping function is (1 − µc3
µc1

)i. Com-
bining with Eq. (13), the number of nodes that will be
removed in P2 is

R = P̃2|i · (1−
µc3
µc1

)i

=

(
k

i

)
µic1(1− µc1)k−i · F (µ′p2 , λP) · SP · (1−

µc3
µc1

)i

= SP · F (µ′p2 , λP) ·
(
k

i

)
· (1− µc1)k−i · (µc1 − µc3)i

= SP · F (µ′p2 , λP) · ((1− µc3)k − (1− µc1)k) (16)

So, the size of P ′4 is

P̃ ′4 = P̃2 −R
= SP · F (µ′p2 , λP) · (1− (1− µc3)k) (17)

Passing from P2 to P ′4, the fraction 1 − P̃ ′4/P̃2 = 1 − (1 −
(1− µc3)k/µ′p2 of nodes are removed. As we do in Stage
3, in terms of the size of giant component in P ′4, that is
equivalent to remove the same fraction of nodes from P ′2.
The proportion of nodes that has to be removed from SP

to P ′4 is

1− µ′p2 + µ′p2 · (1−
1− (1− µc3)k

µ′p2
) = (1− µc3)k

Thus, the equivalent µ′p4 = 1−(1−µc3)k. The correspond-
ing fraction of giant component µp4 = µ′p4 · F (µ′p4 , λP).

5.5 Transcendental Equations for Failure Cascading

Following the previous steps, we can obtain the size of
giant component C̃1, P̃2, C̃3 · · · in a certain stage, but no
one knows in which stage the cascading failure stops. Our
main aim is to estimate the size of functioning parts in
the final stage. When repeating the above calculations, we
can observe the pattern of equations:

µ′c1 = φ, µc1 = µ′c1 · F (µ′c1 , λI)

µ′c3 = φ · µp2 , µc3 = µ′c3 · F (µ′c3 , λI)

· · · , · · ·
µ′c2j+1

= φ · µp2j , µc2j+1
= µ′c2j+1

· F (µ′c2j+1
, λI)

and
µ′p2 = 1− (1− µc1)k, µp2 = µ′p2 · F (µ′p2 , λP)

µ′p4 = 1− (1− µc3)k, µp4 = µ′p4 · F (µ′p4 , λP)

· · · , · · ·
µ′p2j = 1− (1− µc2j−1

)k, µp2j = µ′p2j · F (µ′p2j , λP)

To determine the state of the system in the end of
cascading failure, we look at j → ∞. The networks stop

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

x

y

φ=0.4
φ=0.5 φ=0.6

k=2

k=4
k=6

k=8
k=10

k=20

k=30

φ=0.8
φ=1

φ=0.7

Fig. 3. Solutions for Eq. (20) for λP = λI = 2.5, ε1 =

ε2 = 1. The solutions are the corner points of two lines.
It is clearly shown for some cases there is no intersection
(φ = 0.8, k = 4). For some cases one intersection exists
(φ = 0.6, k = 20). For the others, two non-trivial solution
exist.

fragmenting and the functioning giant components are
fixed. Thus, the following equations hold

µ′c2j+1
= µ′c2j+3

= µ′c2j−1

µ′p2j = µ′p2j+2
= µ′p2j−2

Let x = µ′c2j+1
= µ′c2j+3

= µ′c2j−1
and y = µ′p2j =

µ′p2j+2
= µ′p2j−2

, then we obtain a set of transcendental
equations {

x = φ · y · F (y, λP)

y = 1− (1− x · F (x, λI))
k

(18)

where F (·, λP), F (·, λI) are according to Eq. (8).
The fraction of nodes that still function in the final

steady state in both networks can be calculated by{
limj→∞ µpj = µp∞ = y · F (y, λP)

limj→∞ µcj = µc∞ = x · F (x, λI)
(19)

This analysis can be applied to any type of networks. This
gives us a complete solution for the fraction of survivals
in NP and NI. If we can find a non-trivial solution for
x and y, then we can compute the remaining number of
survivals.

5.6 Graphic Solution

According to Lemma (1), let F (y, λP) = ε1 · y1/(3−λP) and
F (x, λI) = ε2 · x1/(3−λI), where ε1 and ε2 are predefined
constants. Eq. (18) comes to{

x = φ · y · ε1 · y1/(3−λP)

y = 1− (1− x · ε2 · x1/(3−λI))k
(20)

In general, it is difficult to derive an expression for x, y
depending on k, φ. Instead, we can solve Eq. (20) with
graphic method [2] for a given set of λP, λI, ε1, ε2.
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Fig. 4. A solution for µp∞ and µc∞ , given λP = λI = 2.2,
ε1 = ε2 = 1. For k = 2, 4, 6, 8, the threshold φc =

0.97, 0.84, 0.74, 0.67 respectively. The first-order discontin-
ues transition occurs at each φc.

We draw two function curves of Eq. (20) and the
intersections are the solutions of x, y. Fig. 3 and Fig. 4 give
complete graphic solutions, based on which we obtain
some insightful findings as following:
• A critical threshold φc exists, beyond which the

system collapses. For the case of k = 20, we find there
is no intersection if φ < 0.6, i.e., no solution exists. While
for φ > 0.6, the two curves have two intersection points.
So φc is approximate to 0.6 for the case of k = 20. For
φ < φc, both networks go into complete fragmentation in
the end. If φ > φc, the two non-trivial intersections are
corresponding to two sets of giant component sizes. In
this case, the solution is the point that is closer to the
initial status, because the system fragmentation stops at
this point and never goes to the small one.
• The φc varies for different values of k. For instance,

it is about 0.73 for k = 10 and 0.83 for k = 6 (λP =

λI = 2.5). We find φc becomes lower for a higher k, which
matches with the intuition that the smart power grid is
more reliable if each power station has more control inter
links.
• The survival ratios of both networks experience first-

order transition at φc. Fig. (4) gives an example solution
for µp∞ and µc∞ . For the case of k = 4, φc equals 0.84,
there is no giant component existing for k < 4. While for
k = 4, both µp∞ and µc∞ have a step function.
• The improvements of µp∞ and µc∞ are sublinear with

the increasing of k, and reach upper bounds. Note that
for all the cases in Fig. (4), µp∞ approaches to 1. This
gives us a meaningful guide that adding control inter
links improves system robustness significantly when k

is small. While when k is sufficiently large, increasing k

does not affect the robustness except φc.
However, finding the non-trivial solution for scale-

free network is challenging since the exactly value of
ε is still unknown, [2], [8], [9], [18]. To the best of our
knowledge, deriving the closed-form solution of Eq. (8)
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Fig. 5. The fraction of survivals in both networks with dif-
ferent λP and λI. The initial networks size SP = 1000, SI =

10000, k=2, n=5. The generalized Barabási-Albert model
is used to construct the two scale-free networks. The initial
random failure 1− φ is occurs in network NI.

is still open. Therefore, in this work, we resort to the
standard graphical method for simulations.

6 EXPERIMENTAL VALIDATION

In this section, we generate an interdependent network
and simulate cascading failure to obtain the fractions
of functioning parts (survival ratio) µp∞ and µc∞ . To
generate the scale-free network with different power-
law distributions, we adopt the generalized Barabási-Albert
model [18], whose power law exponent can vary in the
range (2,+∞). In all the experiments the same approach
is employed: first, we construct two scale-free networks
representing NP and NI; then we remove the fraction of
1− φ nodes in NI as random failure.

6.1 φc and System Robustness

We firstly discuss the values of µp∞ and µc∞ with differ-
ent exponents of λP and λI.

Fig. 5 clearly shows with the decreasing of λP and λI,
which means that the more nodes with high degree, the
better robustness of entire system. Only 50% of nodes
survives for λP = λI = 2.33 when φ = 0.5, but it is
approximate 0.9 for λP = λI = 2.2. φc is also highly
influenced by λ. It is 0.67 for λP = λI = 2.2, while this
increases to 0.82 for λP = λI = 2.5.

We notice when the initial failure or attack upon In-
ternet is small, i.e., less than 5%, the entire power grid
is extremely reliable for all three systems. The curves of
µp∞ remain stable on the right of corner points (0.8 for
λP = λI = 2.2), and drop rapidly on the left. One more
observation is that µp∞ and µc∞ are either zero or nonzero
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simultaneously which indicates that the power grid and
Internet are either totally broken or not.

6.2 Cost and Robustness
Our main aim is to find the relation between system cost
and system robustness. Fig. 6(a) and 6(b) give detailed
curves on various values of k.

It is shown that as the increasing of k, µp∞ and µc∞
increase. This implies a practical meaning that if we let
more operation centers control each power station, the
system would has a much higher robustness. In the case
of k = 1, the system could not bear even 2% failure, the
threshold φc = 0.98. If we add one more control link to
each node, i.e., k = 2, the system robustness experiences a
huge improvement. Not only the φc dramatically decreas-
es to 0.67, but also the system can tolerate small scale of
failure: there is no impact to power grid even 10% of
communication nodes are initially faulty.

In the case of k = 15, the power grid remains to-
tally function, even if 60% of communication network
is destroyed. The φc equals 0.2, approximate five times
promotion compared to 0.98 for the case k = 1. Noticing
in Fig. 6(b), the decrease of µc∞ is quite flat for k = 15.
The loss of Internet is almost all due to the initial failure.

The important finding according to Fig. 6(a) and 6(b) is
that the relation between robustness and cost is sublinear.
The improvement between k = 2 and k = 1 is significant,
while the gap between k = 15 and k = 10 is tiny. Hence,
for building a smart power grid, adding as many as
possible control link is not our choice since the massive
extra cost does not improve system reliability remarkably.

The proposed first-order discontinuous transition [2] in in-
terdependent networks says the size of giant component
meets a sharp transition when φ is approaching to φc. To
be specific, if the network size is infinite, the transition
becomes a step function. Since the real networks are all
non-infinite, this transition could never be first-order.
Normally, there is a small transition interval including the
value of φc. Fig. 7 shows how our model transits around
φc for different k.

In case of k = 5, the giant components always exist in
both µp∞ and µc∞ for φ > 0.42, while the system collapses
when φ < 0.36. Thus, the transition interval is [0.36,
0.42], during which the system might either collapses
or not. Note that for larger k, the transition interval is
smaller, i.e., the transition is more sharp. Our finding
validates the conclusion proposed by [15], that is, when
the coupling between the networks is reduced, at a critical
coupling strength the transition becomes a second-order
continuous phase transition.

A sharp transition is preferred for the realistic smart
grid, since the smaller transition interval makes the sys-
tem easy to be predicted and controlled.

6.3 Various Allocation Strategies with System Ro-
bustness

We now discuss the impact of different operation center
capability n. In this simulation series, the value of k

is set to 2. We change the value of n to explore the
different system robustness. Fig. 8(a) and Fig. 8(b) reveal
the relations between robustness and n.

Generally, the system performance improves with in-
creasing n. As shown in Fig. 8(a), in the case of n = 2,
µp∞ is equal to 0.95 when the initial failure is 1−φ = 0.15.
While it almost equals 1 for the case of n = 200 under
the same situation. We observe promoting n decreases the
threshold value φc in all cases.

We notice for all the cases of n, on the right side of the
corner point φ = 0.8, both µp∞ and µc∞ approach to 1
steadily. While on the left side, the curves drop to zero
more rapidly. Note that for higher n, the slope is smaller.
Comparing Fig. 6(a) and Fig 8(a), it is clearly shown that
the corner point position is determined by k rather than
n. A distinct k completely has a different corner point,
while there is only a sightly change for different n with
a specific k.

Now we consider the transition intervals. Fig. 9 gives
the detailed curves for different values of n. When n

is equal to 2, the interval is [0.71, 0.77]. It extends dra-
matically for the case of n = 200, with the approximate
value between [0.37, 0.77]. Hence, increasing n extends
the transition internal, i.e., the transition is much more
flat.

6.4 Validation of Theoretical Analysis

Our extensive simulations validate the mathematical
analysis in Section 5.6. Some conclusions are listed as
follows:
• The system robustness against random failure can

be improved by increasing controlling cost, i.e., adding
more control links for each target (power station). The
robustness improvement is nonlinear with cost promo-
tion, which has been demonstrated by our figures. Both
mathematical and experimental results show the power
grid is intact against random failure when k is large
enough.
• The critical threshold φc is inverse proportional to

the value of k. The transition at φc is first-order in math-
ematical analysis, while it is second-order in simulation.
The reason is that the real world network is non-infinite.
Meanwhile, increasing controlling cost k shortens the
transition interval in real smart grid, and makes system
easier to be predicted and controlled.
• The monitoring capability n of each operation center

has no impact on system robustness according to the
transcendental Eq. (18). While our simulations give a little
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Fig. 6. System Robustness vs. k. The initial networks size SP = 1000, SI = 10000, λP = λI = 2.2, n = 5.
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Fig. 7. The different probabilities varies with k for the entire
system to have a functioning part after cascading failure
stops. λP = λI = 2.2, n = 5. For the case of k = 3,
the entire smart grid system collapses if φ < 0.53; for
φ > 0.6, giant components always exist in both µp∞ and
µc∞ . During the interval, there is a probability for giant
component existing.

bit different story. The reason is that the network size for
simulation is finite, while our math calculation is based on
the assumption that the number of nodes is large enough
so that Law of Large Numbers is satisfied. The experimental
results are meaningful because the real world network
size is always non-infinite.

• Based on our analysis, we would conclude that it
is important to find a trade-off between expenditure
and performance for building smart grid infrastructures.
While if the controlling cost is fixed and we still want to
promote the system robustness. Then one possible way
is: increasing monitoring capability n. Consequently, the
total number of operation center required decreases. By

this way, the reliability experiences a slight improvement.
But the disadvantage of this method is obvious: the
transition interval is extended so that the entire system
becomes unpredictable.

7 CONCLUSIONS

We study the system robustness of smart grid against
cascading failure between its power grid and commu-
nication network. Using percolation theory, we calculate
the size of functioning giant component after the cas-
cading failure stops. Our work indicates that in smart
grid, a threshold exists for the proportion of faulty n-
odes, beyond which the system collapses. Meanwhile, our
mathematical analysis gives a relation between system
robustness and controlling cost. By extensive simulations,
we validate our mathematical analysis and obtain the
accurate results. It is suggested that increasing monitoring
cost indeed improves robustness, but trade-offs between
expenditure and performance should be discussed. This
work is helpful to build a reliable smart grid infrastruc-
ture, with considering the cost. In the future work, we
will investigate the issues on decreasing the impact of
cascading failure.
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